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Abstract

In considering a modified approximation scheme for Fermi hypernetted chain (FHNC) theory, an integral arose that

needed to be evaluated on a routine basis. By evaluating a portion of the integral in closed form, the time required for

computation of the complete integral was considerably reduced. This paper presents the closed form evaluation along

with some calculations using the result on the electron gas.
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1. Introduction

Fermi hypernetted chain (FHNC) theory was originally developed [1–4] for the study of nuclear matter.

It was not long, however, before it was recognized as a potentially useful tool for studying other many-

fermion systems as well. For instance, the theory has been applied to quantum liquids (such as 3He [5–7])
and the fractional quantum Hall effect [8–10]. Of particular interest to the author is the application of

FHNC theory to the electronic structure of chemical systems. The theory has been applied to the electron

gas [11–13], the charged impurity [14,15], and some closed-shell atoms [16,17]. As a routine computational

tool, FHNC theory would certainly be a poor choice. However, circumstances can arise where traditional

calculational techniques lead to inconclusive results. FHNC theory provides an alternative, highly accurate

approach for the study of many-electron systems and could be used to help resolve questions that may arise

in such situations.

The basis of FHNC theory is the assumption of a Jastrow–Feenberg [18] form for the trial wave
function. This function consists of a Slater determinant of one-particle functions times a correlation factor.

In its usual formulation, the correlation factor is constructed from one-particle and two-particle correlation

potentials. The usefulness of the FHNC equations is that they provide a means of evaluating the distri-
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bution functions associated with the Jastrow–Feenberg wave function, which in turn can be applied to the

evaluation of the expectation value of the hamiltonian. Nearly all efforts in the literature have been aimed at

the two-body distribution function although recent work [19] has presented the equations for the three-

body distribution. The distribution function is expanded in an infinite sum of terms and a diagrammatic

representation of the terms is introduced. These diagrams contain points, which represent particle coor-

dinates, and lines of connection between the points, which represent specific functions. The diagrams can be

categorized into several different types and the expansion of the distribution function is separated into

several different infinite sums of diagrams. By performing a topological analysis, relationships between the
various infinite sums of diagrams can be derived. These are the FHNC equations. The interested reader is

directed to the literature [1–4,19–21] for details.

There is one quantity that cannot be provided by the FHNC equations and that must be computed

separately. This is the sum of what are known as elementary diagrams. This is an infinite sum and, nat-

urally, only a finite number can be practically evaluated. Some choice of which diagrams are to be in-

corporated must be made. The most common choice, referred to as the FHNC/0 approximation, is to

include no elementary diagrams. The name for this approximation comes from the fact that it includes all

elementary diagrams containing up to 0 points. The smallest elementary diagrams contain four points and
including all 35 such diagrams [22] is referred to as the FHNC/4 approximation. Naturally, evaluation of 35

terms can be considerably time-consuming and calculations rarely go beyond the FHNC/0 level.

There is another problem with the FHNC/n approximations. These choices of elementary diagrams

destroy what is known as the fermi cancellation phenomenon. In the sum of diagrams, there are certain

groups of terms that exactly cancel each other. This cancellation is associated with the fermi statistics of the

particles and is expected to be important for long-range correlations. Krotscheck and Ristig [3,4] first

noticed this property of the FHNC/n approximation and derived an alternative formulation of the theory

that preserves the fermi cancellation phenomenon at all orders of approximation. This is at the expense,
however, of neglecting certain contributions to the full cluster expansion. The Krotscheck–Ristig formu-

lation is therefore, at its core, an approximation, and has been referred to ‘‘as an incomplete version’’ [20] of

FHNC theory. It would be desirable to deal with the fermi cancellation phenomenon without resorting to a

fundamentally approximate formulation. It was this idea that led up to the work reported in this paper.

An explicit example of the problem is given in the following. There are several conventions used to

represent the diagrams. The convention used here is that of Gaudin et al. [23]. In the FHNC/0 approxi-

mation, the terms

ðAÞ

appear. However, these are canceled by the term

ðBÞ

which does not appear until a higher level of approximation. One thing that the canceling terms have in

common is the same number of bond lines (the dotted lines in the diagrams above). The various levels of

FHNC/n approximation are based instead on the number of points in the elementary diagrams. It seemed
reasonable, then, to base the choice of elementary diagrams on the number of bond lines and it is suggested

that this might reduce some of the problems that might be associated with a lack of fermi cancellation. Such

approximations will be indicated as FHNC(n) approximations, the value of n indicating the number of

bond lines to include in the sum of elementary diagrams.
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In the derivation of the FHNC equations, there is one diagram that is technically classified as elementary

but is automatically included in the equations and segregated from the rest of the elementary diagrams.

This elementary diagram consists solely of a bond line between the two external points. The lowest order

approximation based on bond lines should therefore contain all elementary diagrams with one bond line,

the so-called FHNC(1) approximation. As it turns out, there is only one such elementary diagram and it is

the one given in (B).

It is important to point out that including this diagram does not ensure complete fermi cancellation.

Rather, it relegates it to a higher order (but more efficiently than the FHNC/4 approximation would). For
instance, in the FHNC(1) approximation, the diagram

ðCÞ

is included, but the canceling diagram

ðDÞ

is not. Diagram (D) is an elementary diagram and would not be included until the FHNC(2) level of

approximation (for which there are 20 elementary diagrams).

The project undertaken was to study the FHNC(1) approximation and compare results under this ap-

proximation with others. The testing ground for this was chosen to be the electron gas. This requires the
evaluation of the integral associated with diagram (B) and this proved to be a difficulty in a number of ways

when a fully numerical evaluation was performed. To solve some of the problems, the integral was eval-

uated partially in closed form and the closed-form evaluation is the subject of this paper. The evaluation is

non-trivial and could provide some insights for the evaluation of similar integrals in the application of

FHNC theory. Analysis of the FHNC(1) approximation itself is intended for a future publication.

For a homogeneous system, the diagram (B) can be expressed in terms of a many-dimensional integral

Eð1Þ
ee ðr12Þ ¼ � 1

8
q2
0

Z
d3r hðrÞ

Z
d3r0 rðr0Þrðjr0 � r12jÞrðjrþ r0jÞrðjrþ r0 � r12jÞ: ð1Þ

In this equation, hðrÞ represents the bond line and is given explicitly by

hðrÞ ¼ eu2ðrÞ � 1; ð2Þ

where u2ðrÞ is the two-body correlation potential. The function, rðrÞ, represents the exchange lines (the

arrows in the diagram). For a homogeneous system, it is given explicitly by

rðrÞ ¼ 3j1ðkFrÞ
kFr

ð3Þ

with j1ðzÞ being a spherical bessel function of order 1 and kF is the fermi wave vector. The fermi wave vector

is related to the electron gas density, q0, by

q0 ¼
k3F
3p2

: ð4Þ

In a numerical solution of the FHNC equations, the many-dimensional integral (1) must be evaluated

over a grid of values of r12 and this evaluation would be repeated as the two-body correlation potential was
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varied during its optimization. There are certainly numerical techniques that can be used to evaluate this

integral, but any analytical reduction would make the evaluation more efficient and more accurate. This

reduction is the focus of this paper.
2. Reduction of the integral

By introducing the fourier transforms of the exchange line functions, Eq. (1) can be rearranged to

Eð1Þ
ee ðrÞ ¼ � 81q2

0

64k12F

Z 1

0

dr00 r00
2

hðr00Þ
Z

d3qj0ðqr00Þ F ðq; rÞj j2; ð5Þ

where

F ðq; rÞ ¼
Z

d3k eik�rhðkF � kÞhðkF � jq� kjÞ ð6Þ

and hðzÞ is the heaviside function. It may be mentioned that a different evaluation of the fourier transform

of Eq. (5) has been presented in the literature [24]. However, that evaluation relied on an approximate

evaluation of Eq. (6) followed by subsequent numerical integrations. The evaluation in this paper relies on

no such approximations and so is expected to be more generally useful. A little more manipulation of Eq.

(5) leads to

Eð1Þ
ee ðrÞ ¼ � 81q2

0

64k12F

Z 1

0

dr00 r00
2

hðr00Þ
Z

d3k eik�rhðkF � kÞ
Z

d3k0 eik
0 �rhðkF � k0Þ

�
Z 1

0

q2 dqj0ðqr00Þ
Z

dXq hðkF � jq� kjÞhðkF � jq� k0jÞ: ð7Þ

The bulk of this paper will focus on the evaluation of the quantity

Jðq; k; k0; gÞ ¼
Z

dXq hðkF � jq� kjÞhðkF � jq� k0jÞ; ð8Þ

where g ¼ cos h, h being the angle between the two vectors, k and k0. That it will depend on only the four
coordinates specified can be shown by symmetry arguments. Before getting to this evaluation, consider the

reduction of the rest of the integral.

The function, hðrÞ, is assumed to be given. It is therefore possible to evaluate the function

ĥðqÞ ¼
Z 1

0

r2j0ðqrÞhðrÞdr ð9Þ

to a high degree of accuracy. Inserting this into Eq. (7),

Eð1Þ
ee ðrÞ ¼ � 81p2q2

0

8k12F

Z kF

0

dk k2
Z kF

0

dk0 k0
2

Z 1

�1

dg j0 k2 þ 2kk0gþ k0
2

h i1=2
r

� �Z 1

0

q2 dqJðq; k; k0; gÞĥðqÞ:

ð10Þ

Finally, define the function

Kðk; k0; gÞ ¼ k2k0
2

Z 1

0

q2 dqJðq; k; k0; gÞĥðqÞ: ð11Þ
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The equation for the elementary diagram is then

Eð1Þ
ee ðrÞ ¼ � 81p2q2

0

8k12F

Z kF

0

dk
Z kF

0

dk0
Z 1

�1

dg j0 k2 þ 2kk0gþ k0
2

h i1=2
r

� �
Kðk; k0; gÞ: ð12Þ

The computational procedure is to first evaluate ĥðqÞ numerically, then using an analytic expression for

Jðq; k; k0; gÞ, the function Kðk; k0; gÞ is evaluated over the appropriate grid. Storing this function, it can be

used without change for all values of r.
3. The evaluation of J

The integral in Eq. (8) represents the surface area of that portion of a sphere of radius q centered at the

origin which is inside the intersection of two spheres of radius kF centered at the two points, k and k0. For

clarity, the sphere about the origin which is being integrated over will be referred to as the q-sphere, while
the other two spheres will be referred to as k-spheres. When more specificity is needed, they will be referred

to separately as the k- and the k0-spheres. The magnitudes of the vectors pointing to the centers of the two
k-spheres are limited in the integrals to a maximum of kF. Therefore, the origin in q will necessarily be

contained in both k-spheres. For convenience, let k correspond to the longer of the two vectors and define

the qz-axis so that it is aligned with this vector. Next, define the qx-axis so that k0 is in the ðqx; qzÞ-plane and
has a non-negative component in the qx direction.

Let k, k0, and g be fixed and consider the evaluation of J over a range of values of q. Just how the

integrals are to be evaluated depends on the size of q. The important issues are associated with how the

three spheres intersect each other. To illustrate this, Fig. 1 shows the different ways that the spheres can

intersect. The diagrams are the cross sections in the ðqx; qzÞ-plane with k ¼ ð0:0; 0:0; 0:9Þ, k0 ¼
ð0:4; 0:0;�0:3Þ, and kF ¼ 1:5. The k-spheres are shown with solid curves and the q-sphere with a dashed

curve. The dotted lines indicate the projections of where the q-sphere intersects the two k-spheres; these
intersections are actually circles perpendicular to and bisected by the ðqx; qzÞ-plane that is shown. The

hashed region indicates the projection of the surface of the q-sphere over which the integration is to be

performed. For the smallest value of q shown, the q-sphere does not intersect either of the two k-spheres
and the entire sphere is integrated over. For the second value of q, there is one intersection and the inte-

gration is over a truncated sphere. For the last two values of q, the q-sphere intersects both k-spheres, but
the region of integration is quite different in the two cases. The evaluation of J has to be considered
separately in all the different regions.

If q6 kF � k (recalling that k is the longer of the two vectors), then the q-sphere does not intersect either
of the k-spheres and the evaluation of J is trivial.

Jðq; k; k0; gÞ ¼ 4p; q6 kF � k: ð13Þ

If kF � k6 q6 kF � k0, then the q-sphere intersects only the k-sphere centered at k and again, the integral is

trivial.

Jðq; k; k0; gÞ ¼ 2pð1� cos aÞ kF � k6 q6 kF � k0; ð14Þ

where a is the angle between k and the point on the q-sphere at which the intersection occurs. Specifically,

cos a ¼ k2 þ q2 � k2F
2qk

: ð15Þ

At the other extreme, if qP kF þ k0 then the surface of the q-sphere is outside the region of intersection of

the two k-spheres and clearly,



Fig. 1. The intersection of spheres in a typical case for several values of q. All cases have k ¼ 0:9, k0 ¼ 0:5, g ¼ �0:6, and kF ¼ 1:5. The

values of q are: (a) q ¼ 0:2, (b) q ¼ 0:8, (c) q ¼ 1:08, and (d) q ¼ 1:4. The spheres about the two points are shown with solid curves and

that about the origin with a dashed curve. The spheres intersect at the dashed lines and the region over which the integrals must be

performed is indicated by the hashes.
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Jðq; k; k0; gÞ ¼ 0; qP kF þ k0: ð16Þ

For the other values of q, the situation is more complicated. Viewing the projections in the ðqx; qzÞ-plane is
helpful for organizing the various cases that must be considered. These projections are best represented

with the q-sphere appearing as a circle and the projections of the intersections with the k-spheres appearing
as lines. The vectors, k and k0, are viewed as given quantities and the q-sphere is allowed to grow in size, the

intersections with the k-spheres being introduced at the appropriate times.
Keep in mind that kP k0, that k is directed along the positive qz-axis, and that k0 is directed in the

positive qx half-plane (unless it points along the qz-axis). These facts allow several general features to be

identified. First, as q increases in magnitude from 0, the intersection with the k-sphere occurs first, starting
when q ¼ kF � k. The projection of this intersection will appear first as a point at the very bottom of the q-
sphere and then as a rising horizontal line. Trigonometric analysis leads to the following equation for this

line

qz ¼ z0 � q cos a ¼ k2 þ q2 � k2F
2k

; ð17Þ

where qz represents the z-coordinate in the ðqx; qzÞ-plane. The projection of the surface of the q-sphere over
which the integration in J is to be performed will be above this horizontal line.

The q-sphere first intersects the k0-sphere when q ¼ kF � k0. It appears as a point at an angle p� h with

the vertical and to the left of the qz-axis (h, recall, is the angle between k and k0). It will be exactly opposite
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to the direction in which k0 is pointing. As q grows, the point grows to a line, always perpendicular to the

vector k0. It moves in the direction of the k0 vector as q grows. The equation for this line is given by

qz ¼ z1 þ
ðz2 � z1Þ
ðx2 � x1Þ

ðqx � x1Þ; ð18Þ

where qx and qz are the coordinates in the ðqx; qzÞ-plane. The various parameters appearing are the points on

the q-sphere at which it intersects the k0-sphere. Trigonometric analysis leads to the formulas

x1 ¼ q sin h cos a0
�

� cos h sin a0
�
;

x2 ¼ q sin h cos a0
�

þ cos h sin a0
�
;

z1 ¼ q cos h cos a0
�

þ sin h sin a0
�
;

z2 ¼ q cos h cos a0
�

� sin h sin a0
�

ð19Þ

and a0 is the angle between k0 and where the k0-sphere intersects the q-sphere. Specifically,

cos a0 ¼ k0
2 þ q2 � k2F

2qk0
: ð20Þ

If x2 ¼ x1, Eq. (18) is not defined. This case corresponds to the intersection being a vertical line. The correct

equation to use in this case is

qx ¼ x1: ð21Þ

The projection of the surface over which the integration in J is to be performed will be to the right of the

intersection line with the k0-sphere. If h equals 0 or p, the projection will be above or below, respectively.

Fig. 2 illustrates the various geometrical quantities that have been defined. It shows the projection of the

intersecting spheres in the ðqx; qzÞ-plane. The q-sphere appears as a circle and the intersections with the k-
and k0-spheres appear as chords in the circle. The vectors k and k0 are also shown. Three angles have been

defined and they are illustrated in the figure. The angle between the two vectors k and k0 is defined as h. The
angle a is defined as the angle between k and the line from the center of the q-sphere to where the k-sphere
intersects the q-sphere. The angle a0 is defined similarly with respect to the vector k0. The points in the

ðqx; qzÞ-plane where the k-sphere intersects the q-sphere occur at ðx�; z0Þ ¼ ð�q sin a; q cos aÞ. The points in
the ðqx; qzÞ-plane, where the k0-sphere intersects the q-sphere occur at ðx1; z1Þ and ðx2; z2Þ, where the coor-

dinates are defined in Eq. (19).

The evaluation of J depends critically on whether the two lines of intersection cross within the circle for
the q-sphere or not. If they do not intersect, the integrations are not difficult. When the k0-sphere is first

intersected, the point of intersection may either be above or below the line of intersection with the k-sphere.
The point then grows into a line and at some point it meets the other line of intersection at the perimeter of

the q-sphere. In this interval of q values, the region of integration is equal to the surface area of the q-sphere
minus only the cap below the line for the k-sphere intersection if the intersection with the k0-sphere is below
this intersection line. If the k0-sphere intersection line is above that for the k-sphere, then a second spherical

cap must be subtracted. These two situations are illustrated in Fig. 3. Which situation applies can be de-

termined by considering what happens when the q-sphere first intersects the k0-sphere. This occurs when
q ¼ kF � k0 and the two spheres just touch at an angle p� h from the vertical. The intersection with the k0-
sphere is below that for the k-sphere if

cos pð � hÞ ¼ � cos h < cos a ¼ k2 þ k0
2 � 2kFk0

2kðkF � k0Þ : ð22Þ



Fig. 3. The two situations where the intersection with the k0-sphere is above or below that with the k-sphere.

Fig. 2. A view of the q-sphere projected in the ðqx; qzÞ-plane along with the various geometric quantities defined in the text.
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The intersection is above if the inequality is reversed. The evaluation of J in the region before the two lines

intersect within the sphere is then given by

J ¼
2pð1� cos aÞ ¼ pðk2F � ðk � qÞ2Þ

kq ; � cos h < cos a;

�2pðcos aþ cos a0Þ ¼ pðk þ k0Þðk2F � q2 � kk0Þ
qkk0 ; � cos h > cos a:

8><
>: ð23Þ

From Fig. 2, it can be deduced that the two lines first intersect when hþ aþ a0 ¼ 2p. Insertion of the

various quantities and solving for q leads to two solutions.

q� ¼ k2F

"
þ kk0 cos h

 
� 4k2F

k2 � 2kk0 cos hþ k02

�
� 1

�1=2
sin h

!#1=2
: ð24Þ
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The lower sign corresponds to the desired root. The upper sign represents the value of qwhere the two lines just
intersect on the right side of the circle. This is illustrated in Fig. 4 for the two cases where the intersection with

the k0-sphere first occurs above or below that with the k-sphere. Eq. (23) is applicable for kF � k0 < q < q�.
For the region q� < q < qþ, the two lines intersect within the q-sphere and the integration is more

complicated. Fortunately, the integration can be decomposed into several contributions for which Lustig

[25] has provided analytic formulas. Lustig derived a formula for the surface area of what he calls a diangle.

A diangle is the portion of a sphere obtained by cutting the sphere exactly in half and then once more in an

arbitrary plane. It is necessary only to identify the appropriate diangles that are combined in the evaluation
of J and perform the necessary algebra on the result.

To be clear on notation, consider the diangle represented in Fig. 5. Note first that the division of the

sphere by the two planes actually generates four diangles. Attention will always be focused on the smaller

side of the second plane – the one not going through the center of the sphere. There are two such diangles

on this side. Fig. 5 represents the plane through the center of the sphere and perpendicular to the two

dividing planes. Orient the planes so that the second plane is horizontal and the diangle is the right-most

portion above the second plane. Two angles can then be identified: v represents the angle between the

vertical and the plane passing through the center of the sphere and w represents the angle between the
vertical and the line from the center of the sphere to where the second plane intersects the sphere. The angle

v will be considered positive if it is to the right of the vertical (towards the region of the diangle) and

negative if it is to the left (where the diangle now extends beyond the vertical). The angle w is always

positive. It is easily deduced that v extends from �p=2 to p=2 and w extends from 0 to p=2. For v > 0, the

formula of Lustig [25] gives the surface area
Fig. 4. The points where the two lines just intersect with the q-sphere. The left-hand figures correspond to q� and the right-hand figures

to qþ of Eq. (24).



Fig. 5. The definitions of the angles v and w used for the evaluation of the surface area over a diangle.
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Sðsin v; sinwÞ ¼ 2 arcsin 1

� (
� sin2 v

sin2 w

�1=2!
� cosw arccos

tan v
tanw

� �)
ðv > 0Þ: ð25Þ

If v < 0, the formula of Lustig must be modified. It can be shown that

Sðsin v; sinwÞ ¼ 2 p

(
� arcsin 1

� 
� sin2 v

sin2 w

�1=2!
� cosw arccos

tan v
tanw

� ��
ðv < 0Þ: ð26Þ

Eqs. (25) and (26) can be combined into the single equation

Sðsin v; sinwÞ ¼ 2 arccos
sin v
sinw

� ��
� cosw arccos

tan v
tanw

� ��
: ð27Þ

Since Eq. (27) assumes that the diangle of interest is on the smaller side of the second cutting plane, its use

will depend on the relationship between the angles a and a0. Since kP k0, it is always true that

cos aP cos a0. Where the diangles for which Eq. (27) can be applied occur depends on whether these cosines
are greater than or less than 0. There are three separate cases to consider: (a) cos a0 6 cos a6 0, (b)

cos a0 6 06 cos a, and (c) 06 cos a0 6 cos a.
Consider case a first. A typical scenario is illustrated in Fig. 6. The region over which J is to be evaluated

is above the horizontal line and to the right of the second line. This is best evaluated by subtracting from the

full surface area of the sphere the areas of the two spherical caps and then adding back the area for the

overlapping region of the two caps. It is this overlapping area to which Eq. (27) can be applied.

This region is composed of two diangles. Draw a radius through the intersection of the two lines. For the

diangle that is shaded in Fig. 6, the angle w is given by p� a. For the other diangle, the angle w is given by
p� a0. Focus for now on the shaded diangle. This is constructed with the horizontal line and a perpen-

dicular has been drawn to this line going through the center of the circle. The angle v to be used in Eq. (27)

corresponds to the angle b drawn in the figure. A perpendicular is also drawn with the other line and the

four-sided figure constructed from the two perpendiculars and the two lines is reproduced in Fig. 7. The

four sides and the two diagonals are labeled. Using a number of trigonometric identities, it is possible to

relate the angle b to the parameters used to define the original problem.



Fig. 7. The four-sided figure associated with Fig. 6.

Fig. 6. The geometry associated with case a.
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To begin, the two perpendiculars are collinear with k and k0, so the angle between them is h. Next, using

the definitions of a and a0, the lengths of the perpendiculars are given by u ¼ q cosðp� aÞ ¼ �q cos a and

v ¼ �q cos a0. The diagonal, k, is the common hypotenuse of two right triangles, so that

k2 ¼ u2 þ w2 ¼ t2 þ v2: ð28Þ

The diagonal, l, is also common to two triangles. One of the opposite angles is h. By construction, the

other must be p� h. Solving Eq. (28) for t and inserting it into the equation for l, there results

l2 ¼ u2 þ v2 � 2uv cos h ¼ 2w2 þ u2 � v2 þ 2w w2
	

þ u2 � v2

1=2

cos h: ð29Þ
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Define f ¼ w2 � v2. Eq. (29) then can be written

f2 sin2 h� ðu2 cos2 h� 2uv cos hþ v2 cos2 hÞf ¼ 0: ð30Þ

One solution of this equation is f ¼ 0 which implies that w2 ¼ v2. This is certainly not true in general, so

that it is the second solution which is required.

f ¼ u2 cos2 h� 2uv cos hþ v2 cos2 h

sin2 h
: ð31Þ

This allows w and k to be evaluated in terms of u and v and there results

sin2 b ¼ w2

k2
¼ ðv� u cos hÞ2

u2 � 2uv cos hþ v2
¼ ðcos a0 � cos a cos hÞ2

cos2 a� 2 cos a cos a0 cos hþ cos2 a0
: ð32Þ

The correct sign is obtained with the root

sin b ¼ cos a cos h� cos a0

cos2 a� 2 cos a cos a0 cos hþ cos2 a0½ �1=2
: ð33Þ

Since b0 ¼ h� b and b6 p=2, it can be shown immediately that

sin b0 ¼ cos a0 cos h� cos a

cos2 a� 2 cos a cos a0 cos hþ cos2 a0½ �1=2
: ð34Þ

Although sin b can never be negative (since cos a0 6 cos a6 0), the quantity sin b0 can be. The evaluation of

J for case a is therefore given by

J ¼ �2pðcos aþ cos a0Þ þ Sðsin b; sin aÞ þ Sðsin b0; sin a0Þ ðcos a6 0Þ: ð35Þ

Case b corresponds to cos a0 6 06 cos a. A typical scenario is illustrated in Fig. 8. The region over which

the integral is to be performed is above the horizontal line and to the right of the other. It is more con-

venient here to evaluate J directly. Because of the arrangement of the lines, the evaluation of J corresponds

to a difference of diangle areas. The first diangle is that fully to the right of the dashed line in Fig. 8 and
Fig. 8. The geometry associated with case b.
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above the horizontal line. From the area of this diangle must be subtracted the area of the diangle marked

by the hash marks in the figure. For the larger diangle, the angle w corresponds to a. The angle b can be

evaluated in a similar way to the case a analysis except that now u ¼ q cos a and v ¼ �q cos a0. Following
through, it is found that

sin b ¼ cos a0 � cos a cos h

cos2 a� 2 cos a cos a0 cos hþ cos2 a0½ �1=2
ð36Þ

and

sin b0 ¼ cos a� cos a0 cos h

cos2 a� 2 cos a cos a0 cos hþ cos2 a0½ �1=2
: ð37Þ

There results

J ¼ Sðsin b; sin aÞ � Sðsin b0; sin a0Þ ðcos a0 6 06 cos aÞ: ð38Þ

Case c closely parallels the other two. Eqs. (36) and (37) hold for this case as well and

J ¼ Sðsin b; sin aÞ þ Sðsin b0; sin a0Þ ð06 cos a0 6 cos aÞ: ð39Þ

It is desirable to have a common formula for all three cases. The quantities in Eqs. (33) and (34) differ

only in sign from those in Eqs. (36) and (37). It is convenient to define the angles, c and c0, so that regardless

of the conditions,

sin c ¼ cos a0 � cos a cos h

cos2 a� 2 cos a cos a0 cos hþ cos2 a0½ �1=2
ð40Þ

and

sin c0 ¼ cos a� cos a0 cos h

cos2 a� 2 cos a cos a0 cos hþ cos2 a0½ �1=2
: ð41Þ

With these definitions, the expressions for the three cases can be worked out in a little more detail.

(a) cos a0 6 cos a6 0

J ¼ 2 arccos

��
� sin c
sin a

�
þ arccos

�
� sin c0

sin a0

�
� cos a arccos

tan c
tan a

� �
� cos a0 arccos

tan c0

tan a0

� ��
;

ð42Þ

(b) cos a0 6 06 cos a

J ¼ 2 arccos
sin c
sin a

� ��
� arccos

sin c0

sin a0

� �
� cos a arccos

tan c
tan a

� �
� cos a0 arccos

tan c0

tan a0

� ��
; ð43Þ

(c) 06 cos a0 6 cos a

J ¼ 2 arccos
sin c
sin a

� ��
þ arccos

sin c0

sin a0

� �
� cos a arccos

tan c
tan a

� �
� cos a0 arccos

tan c0

tan a0

� ��
: ð44Þ

These three formulas differ only in the first two terms. By introducing an identity for the arccosine [26], the
first two terms in all three expressions can be replaced by
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Sum of first two termsð Þ ¼ arccos
1

sin a sin a0
sin c sin c0

8<
:

0
@

� cos a cos a0
ðsin2 a� sin2 cÞðsin2 a0 � sin2 c0Þ

ð1� sin2 aÞð1� sin2 a0Þ

" #1=29=
;
1
A: ð45Þ

Finally, introducing the definitions of c and c0 and keeping track of the signs of the trigonometric functions

in the three regions, it can be shown that

J ¼ 2 arccos
cos a cos a0 � cos h

sin a sin a0

� ��
� cos a arccos

cos a0 � cos a cos h
sin h sin a

� �

� cos a0 arccos
cos a� cos a0 cos h

sin h sin a0

� ��
: ð46Þ

This equation is valid regardless of the relative values of cos a and cos a0.
There is now one more case that needs to be considered. For smaller values of h, it is possible for the

region excluded by the intersection with the k0-sphere to fully contain that for the k-sphere. This situation is

illustrated in case (d) of Fig. 4. This situation occurs when cos aþ < cos h, where

cos aþ ¼ k2 þ q2þ � k2F
2kqþ

: ð47Þ

In such a situation, with qþ < q < kF þ k0,

J ¼ 2pð1� cos a0Þ ¼ pðk2F � ðk0 � qÞ2Þ
k0q

: ð48Þ
4. Summary

The equations can be summarized as follows.

J ¼

4p 0 � q � kF � k
pðk2

F
�ðk�qÞ2Þ
kq kF � k � q � kF � k0

pðk2
F
�ðk�qÞ2Þ
kq � cos a� � cos h

pðkþk0Þðk2
F
�q2�kk0Þ

qkk0 � cos a� � cos h

8<
:

9=
; kF � k0 � q � q�

2 arccos cos a cos a0 � cos h
sin a sin a0

� �n
� cos a arccos cos a0 � cos a cos h

sin h sin a

� �
� cos a0 arccos cos a� cos a0 cos h

sin h sin a0
� �o

q� � q � qþ
pðk2

F
�ðk0�qÞ2Þ
k0q cos aþ � cos h

0 cos aþ � cos h

( )
qþ � q � kF þ k0

0 kF þ k0 � q

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð49Þ

where the parameters are defined as



Table 1

Computed energies (in hartree atomic units) within the FHNC/0 and FHNC(1) approximations

rs FHNC/0 FHNC(1)

1.0 0.58496 0.60518

2.0 0.00263 0.01246

3.0 )0.06488 )0.05881
4.0 )0.07445 )0.07021
5.0 )0.07238 )0.06919
6.0 )0.06771 )0.06519
7.0 )0.06275 )0.06070
8.0 )0.05814 )0.05643
9.0 )0.05402 )0.05256
10.0 )0.05038 )0.04911
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q� ¼ k2F

"
þ kk0 cos h

 
� 4k2F

k2 � 2kk0 cos hþ k02

�
� 1

�1=2
sin h

!#1=2
ð50Þ

and

cos a� ¼ k2 þ q2� � k2F
2kq�

: ð51Þ
5. FHNC calculations

A program was written to perform the evaluation of Eq. (12). In this program, the function, u2ðrÞ, is
given and the fourier transform, ĥðqÞ, defined in Eqs. (9) and (2), is evaluated numerically. This numerical
function is then used with the analytically evaluated function, Jðq; k; k0; gÞ, to compute Kðk; k0; gÞ over a

numerical grid. For the values of r over a chosen grid, the three remaining integrations are performed

numerically. The technical details are given in Appendix A.

The use of the analytic expression for J was compared with the same calculations performed using a fully

numerical algorithm. The use of Eq. (49) required only 12% of the CPU time that the fully numerical

calculation did. It was also noted that the use of the analytic expression led to a better behaved result for

Eð1Þ
ee ðrÞ for larger values of r. One of the main reasons for embarking on this evaluation was to assess the

usefulness of the FHNC(1) approximation. The total energy of the electron gas for several values of rs were
computed within the FHNC approximation, first with the FHNC/0 approximation (no elementary dia-

grams), and second with the FHNC(1) approximation (one elementary diagram). The results are given in

Table 1. The FHNC(1) energies are all higher than the FHNC/0 energies. Except for the rs ¼ 2 results, they

are about 5–10% different; the energy goes through zero near rs ¼ 2, so a percent difference is not very

meaningful in this case. Calculations by Zabolitzky [22] on several model potentials indicate comparable

differences between the FHNC/0 and FHNC/4 approximations. Unfortunately, he did not consider the

electron gas in that study.
6. Conclusions

The single-bond elementary diagram of FHNC theory requires the evaluation of a multidimensional

integral. A portion of this integral was evaluated in closed form and the result is summarized in Eq.
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(49). This is the main result of this paper. The evaluation of this integral may prove useful for similar

integrals that appear in FHNC theory. The specific integral evaluated corresponds to a homogeneous

system, but it may be desired to apply the FHNC(1) approximation to inhomogeneous many-electron

systems. The evaluation outlined here may provide some insights for the more general integral. Higher

order approximations, further, may require similar integrations and the evaluation in this paper may

provide some assistance in such cases. Calculations with this formula led to a reduction in CPU time

by about 88% relative to a fully numerical calculation. The results of these calculations were also better

behaved.
One of the driving forces for evaluating this integral was the proposal of an approximate formulation for

the FHNC theory which bases the inclusion of the elementary diagrams on the number of bond lines rather

than the number of points. The lowest order approximation in this formalism is the FHNC(1) approxi-

mation, which incorporates the single-bond elementary diagram into the equations. Calculations on the

electron gas at this level of approximation led to differences from the FHNC/0 approximation that are

comparable to the differences observed when the FHNC/4 approximation is used in other model systems

[22]. These results suggest that the FHNC(1) approximation may yield improvements over the FHNC/0

approximation comparable to those for the FHNC/4 approximation but with much less effort. Further in-
vestigation of this is needed.

It is also possible to argue that the FHNC(1) approximation should be used in any event. The fermi

cancellation phenomenon is associated with diagrams having the same number of bond lines. It is therefore

reasonable to group together diagrams according to the number of bond lines. Since one elementary di-

agram with a single bond line is automatically incorporated into the FHNC equations, it makes sense to

include the other elementary diagram with a single bond line as well. This is another issue that needs further

investigation.

A particularly tantalizing idea to which the present work might be applied involves what has been
referred to as the ‘‘scaling method’’ for HNC theory [27]. HNC calculations on liquid 4He [28] suggest

a proportionality of the different order contributions to the sum of elementary diagrams. Based on this

observation, the entire sum of elementary diagrams can be proposed to be proportional to the lowest

order correction, which happens to be a single diagram with four points. The proportionality constant

is determined by enforcing the equivalence of two different expressions for the kinetic energy of the

system. These two expressions must be equal when all elementary diagrams are included, but differ

when only a finite number of terms are used. One might propose a similar approximation for FHNC

theory and this, in fact, was done in [7] for the study of liquid 3He. In FHNC theory there are four
different types of elementary diagrams that may be collected in a matrix, E. If Eð1Þ consists of

those elementary diagrams that contain only one bond line, the scaling approximation amounts to

assuming

E ¼ ð1þ sÞEð1Þ: ð52Þ
The scaling factor, s, is determined by requiring that, for instance, the Pandharipande–Bethe [29] and
Jackson–Feenberg [30] forms for the energy be equal. The assumption (52) differs in detail from that of [7]

and further investigation of this idea is called for.
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Appendix A. Computational details

The evaluation of Eð1Þ
ee ðrÞ was carried out in stages. The form for the two-body correlation potential was

assumed to be

u2ðrÞ ¼ � a 1� e�brð Þ
r

ðA:1Þ

with a and b being variational parameters. This is the same type of variational function used by Chak-

ravarty and Woo [31] and others. In order to evaluate the fourier transform, ĥðqÞ, it proved useful to extract

the long-range part. Define

h0ðrÞ ¼ e�a=r � 1: ðA:2Þ

A straightforward evaluation of the integral gives

ĥ0ðqÞ �
Z 1

0

r2j0ðqrÞh0ðrÞdr ¼ � 2a
q2

ker2ð2
ffiffiffiffiffi
aq

p Þ; ðA:3Þ

where ker2ðxÞ is the kelvin function of order 2 [32]. The desired function can then be written as

q2ĥðqÞ ¼ �2a ker2ð2
ffiffiffiffiffi
aq

p Þ þ q2dĥðqÞ; ðA:4Þ

where

dĥðqÞ ¼
Z 1

0

r2j0ðqrÞ e�að1�e�brÞ=r
�

� e�a=r
�
dr: ðA:5Þ

The reason for including the factor of q2 in Eq. (A.4) is to avoid the divergence in ker2ð2
ffiffiffiffiffi
aq

p Þ as q ! 0.
The integral in Eq. (A.5) is easily evaluated numerically. The integrand is short-ranged so that the inte-

gration can be truncated at a relatively small value of r. The maximum value of r was chosen so that e�br

was insignificant with respect to unity. This was set equal to � ln d=b, where d ¼ 10�10. A 4097-point

Romberg integration [33] was used for this evaluation.

The function Kðk; k0; gÞ was evaluated numerically using a 4097-point Romberg integration. Since

Jðq; k; k0; gÞ vanishes for q > 2kF, the integration is effectively finite-ranged. This function was evaluated

over a grid of 129 values of g (from )1 to 1) and two grids of 257 points each of k and k0. For efficiency, only

distinct pairs of k and k0 were explicitly evaluated. The resulting function was stored in a grid for use in all
the other integrals.

The remaining integrals were performed by successive Romberg integrations of the 129-point g grid, the

257-point k0 grid, and the 257-point k grid. The FHNC equations were solved for the two-body distribution

and the energy evaluated using the Clark–Westhaus [34] form for the kinetic energy and the superposition

approximation [35] for the three-body distribution. The integral over g was done by Romberg integration

over the 129-point grid and the integrals over k and k0 were also performed by Romberg integration over

the 257-point grids. The programs were written in C and run on a DEC 600au personal workstation.
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